Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Respir Crit Care Med ; 209(8): 909-927, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619436

ABSTRACT

Background: An estimated 3 billion people, largely in low- and middle-income countries, rely on unclean fuels for cooking, heating, and lighting to meet household energy needs. The resulting exposure to household air pollution (HAP) is a leading cause of pneumonia, chronic lung disease, and other adverse health effects. In the last decade, randomized controlled trials of clean cooking interventions to reduce HAP have been conducted. We aim to provide guidance on how to interpret the findings of these trials and how they should inform policy makers and practitioners.Methods: We assembled a multidisciplinary working group of international researchers, public health practitioners, and policymakers with expertise in household air pollution from within academia, the American Thoracic Society, funders, nongovernmental organizations, and global organizations, including the World Bank and the World Health Organization. We performed a literature search, convened four sessions via web conference, and developed consensus conclusions and recommendations via the Delphi method.Results: The committee reached consensus on 14 conclusions and recommendations. Although some trials using cleaner-burning biomass stoves or cleaner-cooking fuels have reduced HAP exposure, the committee was divided (with 55% saying no and 45% saying yes) on whether the studied interventions improved measured health outcomes.Conclusions: HAP is associated with adverse health effects in observational studies. However, it remains unclear which household energy interventions reduce exposure, improve health, can be scaled, and are sustainable. Researchers should engage with policy makers and practitioners working to scale cleaner energy solutions to understand and address their information needs.


Subject(s)
Air Pollution , Developing Countries , Humans , Biomass , Consensus , Societies , Randomized Controlled Trials as Topic , Observational Studies as Topic
2.
Materials (Basel) ; 14(22)2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34832309

ABSTRACT

There are ongoing research efforts directed at addressing strength limitations of compressed earth blocks (CEB) that inhibit their deployment for structural applications, particularly in areas where masonry systems are regularly subjected to lateral loads from high winds. In this paper, the authors focus specifically on the extent to which polypropylene (PP) fibers can be used to enhance the flexural performance of CEB. Cementitious matrices used for CEB production exhibit low tensile and flexural strength (brittle) properties. This work investigates plain (unreinforced) and fiber-reinforced specimens (short flexural beams) with fiber mass content of 0.2, 0.4, 0.6, 0.8, and 1.0% and ordinary Portland cement (OPC) content of 8%. The influence of the inclusion of fiber was based on tests conducted using the Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (ASTM C1609). Material properties that were quantified included first-peak strength, peak strength, equivalent flexural strength, residual strength, and flexural toughness. There was an observed improvement in the performance of the soil-fiber matrixes based on these results of these tests. It was also observed that when the fiber content exceeded 0.6% and above, specimens exhibited a deflection- hardening behavior; an indication of improvement in ductility. An equivalent flexural strength predictive model is proposed.

3.
Sensors (Basel) ; 21(4)2021 Feb 13.
Article in English | MEDLINE | ID: mdl-33668433

ABSTRACT

Construction workers executing manual-intensive tasks are susceptible to musculoskeletal disorders (MSDs) due to overexposure to awkward postures. Automated posture recognition and assessment based on wearable sensor output can help reduce MSDs risks through early risk-factor detection. However, extant studies mainly focus on optimizing recognition models. There is a lack of studies exploring the design of a wearable sensing system that assesses the MSDs risks based on detected postures and then provides feedback for injury prevention. This study aims at investigating the design of an effective wearable MSDs prevention system. This study first proposes the design of a wearable inertial measurement unit (IMU) sensing system, then develops the prototype for end-user evaluation. Construction workers and managers evaluated a proposed system by interacting with wearable sensors and user interfaces (UIs), followed by an evaluation survey. The results suggest that wearable sensing is a promising approach for collecting motion data with low discomfort; posture-based MSDs risk assessment has a high potential in improving workers' safety awareness; and mobile- and cloud-based UIs can deliver the risk assessment information to end-users with ease. This research contributes to the design, development, and validation of wearable sensing-based injury prevention systems, which may be adapted to other labor-intensive occupations.


Subject(s)
Musculoskeletal Diseases , Musculoskeletal System , Wearable Electronic Devices , Ergonomics , Humans , Musculoskeletal Diseases/diagnosis , Musculoskeletal Diseases/prevention & control , Posture
SELECTION OF CITATIONS
SEARCH DETAIL
...